首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamical arrest of electron transfer in liquid crystalline solvents
Authors:Kapko Vitaliy  Matyushov Dmitry V
Institution:Department of Chemistry and Biochemistry and the Center for the Early Events in Photosynthesis, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, USA.
Abstract:We argue that electron transfer reactions in slowly relaxing solvents proceed in the nonergodic regime, making the reaction activation barrier strongly dependent on the solvent dynamics. For typical dielectric relaxation times of polar nematics, electron transfer reactions in the subnanosecond time scale fall into nonergodic regime in which nuclear solvation energies entering the activation barrier are significantly lower than their thermodynamic values. The transition from isotropic to nematic phase results in weak discontinuities of the solvation energies at the transition point and the appearance of solvation anisotropy weakening with increasing solute size. The theory is applied to analyze experimental kinetic data for the electron transfer kinetics in the isotropic phase of 5CB liquid crystalline solvent. We predict that the energy gap law of electron transfer reactions in slowly relaxing solvents is characterized by regions of fast change of the rate at points where the reaction switches between the ergodic and nonergodic regimes. The dependence of the rate on the donor-acceptor separation may also be affected in a way of producing low values for the exponential falloff parameter.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号