首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bandgap engineering of tetragonal phase CuFeS2 quantum dots via mixed-valence single-atomic Ag decoration for synergistic Cr(VI) reduction and RhB degradation
Institution:1. Department of Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China;2. State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;3. Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract:Bandgap engineering through single-atom site binding on semiconducting photocatalyst can boost the intrinsic activity, selectivity, carrier separation, and electron transport. Here, we report a mixed-valence Ag(0) and Ag(I) single atoms co-decorated semiconducting chalcopyrite quantum dots (Ag/CuFeS2 QDs) photocatalyst. It demonstrates efficient photocatalytic performances for specific organic dye (rhodamine B, denoted as RhB) as well as inorganic dye (Cr(VI)) removal in water under natural sunlight irradiation. The RhB degradation and Cr(VI) removal efficiencies by Ag/CuFeS2 QDs were 3.55 and 6.75 times higher than those of the naked CuFeS2 QDs at their optimal pH conditions, respectively. Besides, in a mixture of RhB and Cr(VI) solution under neutral condition, the removal ratio has been elevated from 30.2% to 79.4% for Cr(VI), and from 95.2% to 97.3% for RhB degradation by using Ag/CuFeS2 QDs after 2 h sunlight illumination. The intrinsic mechanism for the photocatalytic performance improvement is attributed to the narrow bandgap of the single-atomic Ag(I) anchored CuFeS2 QDs, which engineers the electronic structure as well as expands the optical light response range. Significantly, the highly active Ag(0)/CuFeS2 and Ag(I)/CuFeS2 effectively improve the separation efficiency of the carriers, thus enhancing the photocatalytic performances. This work presents a highly efficient single atom/QDs photocatalyst, constructed through bandgap engineering via mixed-valence single noble metal atoms binding on semiconducting QDs. It paves the way for developing high-efficiency single-atom photocatalysts for complex pollutions removal in dyeing wastewater environment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号