首页 | 本学科首页   官方微博 | 高级检索  
     


Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor
Authors:Entezari Mohammad H  Pétrier Christian  Devidal Pierre
Affiliation:Laboratoire de Chimie Moléculaire et Environment, ESIGEC-Université de Savoie, 73376, Le Bourget du Lac, France. moh_entezari@yahoo.com
Abstract:Cavitation due to ultrasonic waves produces highly reactive oxidising species in water. As a result, it can be used to oxidise organic pollutants such as aromatic compounds in dilute aqueous solutions. Recent studies have demonstrated that reactors operating in the high frequency range (e.g. 500 kHz) are more efficient than reactors working at lower frequency (20 kHz) for the destruction of these kinds of contaminants. Our study describes the degradation of phenol with the help of a cylindrical ultrasonic apparatus that operates at 35 kHz (Sonitube-SODEVA). To date, the use of this type of reactor has not been reported. The reaction rates thus obtained were compared to those obtained at the same ultrasonic power (50 W) with more classical devices operating at 20 and 500 kHz. The general result is that in aqueous solution, the rate of phenol destruction is higher at 500 kHz than at 35 or 20 kHz. Addition of hydrogen peroxide and copper sulphate to the medium provides a different oxidative system that proceeds more efficiently at 35 kHz; the time of destruction was about one-third of the time needed at 500 kHz. It was also observed that the intermediate organic compounds are eliminated much faster at 35 kHz in comparison with the two frequencies. The observation of such different behaviour is not necessarily a pure frequency effect, but can be due to a response to other parameters such as the acoustic field and intensity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号