首页 | 本学科首页   官方微博 | 高级检索  
     


An Approximate Max-Steiner-Tree-Packing Min-Steiner-Cut Theorem*
Authors:Lap Chi Lau†
Affiliation:(1) Department of Computer Science, University of Toronto Sandford Fleming Building, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
Abstract:Given an undirected multigraph G and a subset of vertices SV (G), the STEINER TREE PACKING problem is to find a largest collection of edge-disjoint trees that each connects S. This problem and its generalizations have attracted considerable attention from researchers in different areas because of their wide applicability. This problem was shown to be APX-hard (no polynomial time approximation scheme unless P=NP). In fact, prior to this paper, not even an approximation algorithm with asymptotic ratio o(n) was known despite several attempts. In this work, we present the first polynomial time constant factor approximation algorithm for the STEINER TREE PACKING problem. The main theorem is an approximate min-max relation between the maximum number of edge-disjoint trees that each connects S (S-trees) and the minimum size of an edge-cut that disconnects some pair of vertices in S (S-cut). Specifically, we prove that if every S-cut in G has at least 26k edges, then G has at least k edge-disjoint S-trees; this answers Kriesells conjecture affirmatively up to a constant multiple. * A preliminary version appeared in the Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS) 2004. † The author was supported by an Ontario Graduate Scholarship and a University of Toronto Fellowship.
Keywords:05C05  05C40  05C70  68R10  68W25
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号