首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomistic–continuum coupled model for nonlinear analysis of single layer graphene sheets
Institution:2. Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran;3. Department of Mechanical Engineering, Yasouj University, Yasouj, Iran;1. Department of Applied Mechanics, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016, India;2. Department of Mechanical Engineering, Thapar Institute of Engineering and Technology Patiala 147004, Punjab, India
Abstract:In this paper, atomistic–continuum coupled model for nonlinear flexural response of single layer graphene sheet is presented considering von-Karman geometric nonlinearity and material nonlinearity due to atomic interactions. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that of at atomic level through Cauchy–Born rule. Strain and curvature dependent tangent in-plane extensional, bending–extension coupling, bending stiffness matrices are derived from strain energy density function constructed through Tersoff–Brenner potential. The finite element method is used to discretize the graphene sheet at continuum level and nonlinear bending response with and without material nonlinearity is studied. The present results are also compared with Kirchhoff plate model and significant differences at higher load are observed. The effects of other parameters like number of atoms in the graphene sheet, boundary conditions on the central/maximum deflection of graphene sheet are investigated. It is also brought out that the occurrence of bond length exceeding cutoff distance initiates at corners for CFCC, CFCF, SFSS, SFSF graphene sheets and near center for SSSS and CCCC graphene sheets.
Keywords:Graphene sheet  Large deformation  Cauchy–Born rule  Bending analysis  Material nonlinearity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号