H2/CO2 separations in multicomponent metal-adeninate MOFs with multiple chemically distinct pore environments |
| |
Authors: | Zachary M. Schulte,Yeon Hye Kwon,Yi Han,Chong Liu,Lin Li,Yahui Yang,Austin Gamble Jarvi,Sunil Saxena,Gö tz Veser,J. Karl Johnson,Nathaniel L. Rosi |
| |
Affiliation: | Department of Chemistry, University of Pittsburgh, Pittsburgh PA 15260 USA.; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh PA 15260 USA ; U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh PA 15236 USA ; Oak Ridge Institute for Science and Education, Pittsburgh PA 15236 USA |
| |
Abstract: | Metal–organic frameworks constructed from multiple (≥3) components often exhibit dramatically increased structural complexity compared to their 2 component (1 metal, 1 linker) counterparts, such as multiple chemically unique pore environments and a plurality of diverse molecular diffusion pathways. This inherent complexity can be advantageous for gas separation applications. Here, we report two isoreticular multicomponent MOFs, bMOF-200 (4 components; Cu, Zn, adeninate, pyrazolate) and bMOF-201 (3 components; Zn, adeninate, pyrazolate). We describe their structures, which contain 3 unique interconnected pore environments, and we use Kohn–Sham density functional theory (DFT) along with the climbing image nudged elastic band (CI-NEB) method to predict potential H2/CO2 separation ability of bMOF-200. We examine the H2/CO2 separation performance using both column breakthrough and membrane permeation studies. bMOF-200 membranes exhibit a H2/CO2 separation factor of 7.9. The pore space of bMOF-201 is significantly different than bMOF-200, and one molecular diffusion pathway is occluded by coordinating charge-balancing formate and acetate anions. A consequence of this structural difference is reduced permeability to both H2 and CO2 and a significantly improved H2/CO2 separation factor of 22.2 compared to bMOF-200, which makes bMOF-201 membranes competitive with some of the best performing MOF membranes in terms of H2/CO2 separations.Tailorable multicomponent MOFs and MOF membranes for efficient H2/CO2 separation. |
| |
Keywords: | |
|
|