The deformation and fracture of balloons |
| |
Affiliation: | 1. Department of Cardiology, Munich University Clinic, Ludwig-Maximilian University, Germany;2. Department of Cardiac Surgery, Munich University Clinic, Ludwig-Maximilian University, Germany;3. Department of Radiology, Munich University Clinic, Ludwig-Maximilian University, Germany;4. Institute of Medical Informatics, Biometry and Epidemiology, Munich University Clinic, Ludwig-Maximilian University, Germany;5. DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany;1. Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia, United States of America;2. Division of Cardiothoracic Surgery, MedStar Washington Hospital Center, Washington, District of Columbia, United States of America |
| |
Abstract: | Inflation of balloons provides a straightforward way of achieving large biaxial deformations. Previous studies have shown that when a balloon bursts, crack propagation occurs at very high speed – much higher than would be expected from the low strain modulus and elastic wave velocity of the rubber. The present paper is concerned with studies of the deformation and fracture of cylindrical balloons. On inflation, the deformations of such a balloon pass through an unstable region but subsequently increase monotonically with pressure. In this relatively high pressure region, the ratio of the longitudinal and circumferential extension ratios is broadly in accord with expectations from high-strain elasticity theory when the ratio of the corresponding stresses is taken into account. On bursting, crack speeds up to around 300 m/s in this region. It is shown that these speeds are in accord with large increase in incremental moduli for the highly-strained rubber. Marked changes in crack tip profile observed at very high crack speeds are consistent with control of the rate of growth by inertia rather than by the viscoelastic properties of the rubber (as is believed to be the case at lower speeds). Consistent with this, various elastomers having different glass transition temperatures show similar crack growth behaviour in the very high speed region. |
| |
Keywords: | Rubber balloons Fracture of balloons High speed cracks |
本文献已被 ScienceDirect 等数据库收录! |
|