首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Retracted Article: Divergent synthesis of 5-substituted pyrimidine 2′-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases
Authors:Ai Tran  Song Zheng  Dawanna S White  Alyson M Curry  Yana Cen
Institution:Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester VT 05446 USA ; Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond VA 23219 USA, +1-804-828-7405 ; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond VA 23219 USA
Abstract:Recent studies have indicated that 5-methylcytosine (5mC) residues in DNA can be oxidized and potentially deaminated to the corresponding thymine analogs. Some of these oxidative DNA damages have been implicated as new epigenetic markers that could have profound influences on chromatin function as well as disease pathology. In response to oxidative damage, the cells have a complex network of repair systems that recognize, remove and rebuild the lesions. However, how the modified nucleobases are detected and repaired remains elusive, largely due to the limited availability of synthetic oligodeoxynucleotides (ODNs) containing these novel DNA modifications. A concise and divergent synthetic strategy to 5mC derivatives has been developed. These derivatives were further elaborated to the corresponding phosphoramidites to enable the site-specific incorporation of modified nucleobases into ODNs using standard solid-phase DNA synthesis. The synthetic methodology, along with the panel of ODNs, is of great value to investigate the biological functions of epigenetically important nucleobases, and to elucidate the diversity in chemical lesion repair.

A divergent approach has been developed for the synthesis of epigenetically important pyrimidine 2′-deoxynucleosides from one common precursor. These nucleosides were incorporated into oligodeoxynucleotides for the survey of uracil DNA glycosylases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号