首页 | 本学科首页   官方微博 | 高级检索  
     


Diverse ring-opening reactions of rhodium η4-azaborete complexes
Authors:Merlin Heß  ,Tom E. Stennett,Felipe Fantuzzi,Rü  diger Bertermann,Marvin Schock,Marius Schä  fer,Torsten Thiess,Holger Braunschweig
Affiliation:Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany,
Abstract:Sequential treatment of [Rh(COE)2Cl]2 (COE = cyclooctene) with PiPr3, alkyne derivatives and tBuN Created by potrace 1.16, written by Peter Selinger 2001-2019 BMes (Mes = 2,4,6-trimethylphenyl) provided functionalized rhodium η4-1,2-azaborete complexes of the form (η4-azaborete)RhCl(PiPr3). The scope of this reaction was expanded to encompass alkynes with hydrogen, alkyl, aryl, ferrocenyl, alkynyl, azaborinyl and boronate ester substituents. Treatment of these complexes with PMe3 led to insertion of the rhodium atom into the B–C bond of the BNC2 ring, forming 1-rhoda-3,2-azaboroles. Addition of N-heterocyclic carbenes to azaborete complexes led to highly unusual rearrangements to rhodium η21-allenylborylamino complexes via deprotonation and C–N bond cleavage. Heating and photolysis of an azaborete complex also led to rupture of the C–N bond followed by subsequent rearrangements, yielding an η4-aminoborylallene complex and two isomeric η4-butadiene complexes.

Rhodium η4-azaborete complexes can be transformed into a variety of species with ring-opened, BN-containing ligands by treatment with Lewis bases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号