首页 | 本学科首页   官方微博 | 高级检索  
     

深海海底斜坡环境下的声传播
引用本文:胡治国,李整林,张仁和,任云,秦继兴,何利. 深海海底斜坡环境下的声传播[J]. 物理学报, 2016, 65(1): 14303-014303. DOI: 10.7498/aps.65.014303
作者姓名:胡治国  李整林  张仁和  任云  秦继兴  何利
作者单位:1. 中国科学院声学研究所, 声场声信息国家重点实验室, 北京 100190;2. 中国科学院声学研究所南海研究站, 海口 570105;3. 中国科学院大学电子电气与通信工程学院, 北京 100190
基金项目:国家自然科学基金(批准号: 11434012, 41561144006, 11174312, 11404366)资助的课题.
摘    要:海底地形变化对声传播具有很大影响,在南海深海区域海底斜坡环境下进行了一次声传播实验,实验显示倾斜海底环境下声传播损失出现了一些不同于平坦海底环境下的现象,分析并解释了海底地形变化对产生声传播差异的原因.结果表明,海底斜坡对声波的反射增强作用可使斜坡上方的声传播损失减少约5 d B.当声波第一次入射到达的海底位置有较小幅度的山丘(凸起高度小于1/10海深)时,海底小山丘即可对声波有反射遮挡作用,导致在其反射区特定传播距离和深度上出现倒三角声影区,比平坦海底环境下相同影区位置处的传播损失增大约8 d B,影响深度可达海面以下1500 m.而海底斜坡对声波的反射阻挡作用使得从海面反射及水体向下折射的会聚区结构消失,只剩下从水体向上折射的会聚结构.因此,海底地形对深海声传播影响较大,在水下目标探测和性能评估等应用中应予以重视.

关 键 词:深海  海底斜坡  声传播  会聚区
收稿时间:2015-06-09

Sound propagation in deep water with a sloping b ottom
Hu Zhi-Guo,Li Zheng-Lin,Zhang Ren-He,Ren Yun,Qin Ji-Xing,He Li. Sound propagation in deep water with a sloping b ottom[J]. Acta Physica Sinica, 2016, 65(1): 14303-014303. DOI: 10.7498/aps.65.014303
Authors:Hu Zhi-Guo  Li Zheng-Lin  Zhang Ren-He  Ren Yun  Qin Ji-Xing  He Li
Affiliation:1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;2. Haikou Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Haikou 570105, China;3. College of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract:Variation of bathymetry has a large effect on the sound propagation in deep water. An acoustic propagation experiment is carried out in the South China Sea. Some different propagation phenomena are observed for two different tracks in the flat bottom and the sloping bottom environments. Numerical analysis based on the parabolic equation model RAM (range-dependent acoustic model) is performed to explain the causes of the differences. The experimental and numerical results show that the transmission losses (TLs) decrease down to about 5 dB above the slope due to the reflection of the bottom, with a high-intensity region appearing below the sea surface. When a sea hill with a height of 320 m, which is less than 1/10 of water depth, exists in the incident range of sound beams on bottom first time, the sound beams are blocked due to the reflection of the sea hill. Then their propagating directions are changed, which makes an inverted-triangle shadow zone appearing in the reflection area of the sea hill. Compared with the TL results in the flat bottom environment, TLs increase up to about 8 dB in the corresponding area of the first shadow zone, and the abnormal TL effects can reach a maximal depth of 1500 m. Consequently, the shadow amplification effect caused by a small variation of bathymetry in deep water for long-range/large-depth sound propagation should receive enough attention. Furthermore, the convergence-zone structure in the sloping environment is different from that in deep water with flat bottom. The first convergence zone caused by refractions from the water above the axis of sound channel disappears. There are only the sound beams refracted back from water below the axis of sound channel. The numerical simulations show that the reflection-blockage of sound beams caused by the sloping bottom is significant. When the source is located somewhere above the slope, sound beams with large grazing angles can be reflected by the sloping bottom, and only some sound beams with small grazing angles can be refracted in the water without touching the slope and then come into the depth range of the vertical line array (VLA), forming the first part of the convergence zone refracted back from water. As the source moves farther from the VLA, the reflection-blockage of the sloping bottom becomes stronger. Sound beams are all reflected by the slope at a depth of about 3000 m, and they go through below the VLA, which leads to the absence of the first convergence zone caused by refractions from the water above the axis of sound channel. Therefore, the accuracy of bathymetry is meaningful for the sound propagation and target detection in deep water.
Keywords:deep water  sloping bottom  sound propagation  convergence zone
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号