首页 | 本学科首页   官方微博 | 高级检索  
     检索      

掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究
引用本文:王凯,邢艳辉,韩军,赵康康,郭立建,于保宁,邓旭光,范亚明,张宝顺.掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究[J].物理学报,2016,65(1):16802-016802.
作者姓名:王凯  邢艳辉  韩军  赵康康  郭立建  于保宁  邓旭光  范亚明  张宝顺
作者单位:1. 北京工业大学电子信息与控制工程学院, 光电子技术省部共建教育部重点实验室, 北京 100124; 2. 中国科学院苏州纳米技术与纳米仿生研究所, 纳米器件与应用重点实验室, 苏州 215123
基金项目:国家自然科学基金(批准号: 61204011, 11204009, 61574011)、北京市自然科学基金(批准号: 4142005)和北京市教委能力提升项目(批准号: PXM2014_014204_07_000018)资助的课题.
摘    要:利用金属有机物化学气相沉积技术在蓝宝石衬底上制备了掺Fe高阻Ga N以及Al Ga N/Ga N高电子迁移率晶体管(HEMT)结构.对Cp_2Fe流量不同的高阻Ga N特性进行了研究.研究结果表明,Fe杂质在Ga N材料中引入的Fe~(3+/2+)深受主能级能够补偿背景载流子浓度从而实现高阻,Fe杂质在Ga N材料中引入更多起受主作用的刃位错,也在一定程度上补偿了背景载流子浓度.在一定范围内,Ga N材料方块电阻随Cp_2Fe流量增加而增加,Cp_2Fe流量为100 sccm(1 sccm 1mL min)时,方块电阻增加不再明显;另外增加Cp_2Fe流量也会导致材料质量下降,表面更加粗糙.因此,优选Cp_2Fe流量为75 sccm,相应方块电阻高达×10?/,外延了不同掺Fe层厚度的Al Ga N/Ga N HEMT结构,并制备成器件.HEMT器件均具有良好的夹断以及栅控特性,并且增加掺Fe层厚度使得HEMT器件的击穿电压提高了39.3%,同时对器件的转移特性影响较小.

关 键 词:高阻GaN  Fe掺杂  高电子迁移率晶体管  金属有机化合物化学气相沉淀
收稿时间:2015-07-08

Growths of Fe-dop ed GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices
Wang Kai,Xing Yan-Hui,Han Jun,Zhao Kang-Kang,Guo Li-Jian,Yu Bao-Ning,Deng Xu-Guang,Fan Ya-Ming,Zhang Bao-Shun.Growths of Fe-dop ed GaN high-resistivity buffer layers for AlGaN/GaN high electron mobility transistor devices[J].Acta Physica Sinica,2016,65(1):16802-016802.
Authors:Wang Kai  Xing Yan-Hui  Han Jun  Zhao Kang-Kang  Guo Li-Jian  Yu Bao-Ning  Deng Xu-Guang  Fan Ya-Ming  Zhang Bao-Shun
Institution:1. Key Laboratory of Opto-electronics Technology, Ministry of Education, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China; 2. Key Laboratory of Nano Devices and Applications, Suzhou Institute of Nano-Technology and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract:Fe-doped high-resistivity GaN films and AlGaN/GaN high electron mobility transistor (HEMT) structures have been grown on sapphire substrates by metal organic chemical vapor deposition. The lattice quality, surfaces, sheet resistances and luminescent characteristics of Fe-doped high-resistivity GaN with different Cp2Fe flow rates are studied. It is found that high resistivity can be obtained by Fe impurity introduced Fe3+/2+ deep acceptor level in GaN, which compensates for the background carrier concentration. Meanwhile, Fe impurity can introduce more edge dislocations acting as acceptors, which also compensate for the background carrier concentration to some extent. In a certain range, the sheet resistance of GaN material increases with increasing Cp2Fe flow rate. When the Cp2Fe flow rate is 100 sccm, the compensation efficiency decreases due to the self-compensation effect, which leads to the fact that the increase of the sheet resistance of GaN material is not obvious. In addition, the compensation for Fe atom at the vacancy of Ga atom can be explained as the result of suppressing yellow luminescence. Although the lattice quality is marginally affected while the Cp2Fe flow rate is 50 sccm, the increase of Cp2Fe flow rate will lead to a deterioration in quality due to the damage to the lattice, which is because more Ga atoms are substituted by Fe atoms. Meanwhile, Fe on the GaN surface reduces the surface mobilities of Ga atoms and promotes a transition from two-dimensional to three-dimensional (3D) GaN growth, which is confirmed by atomic force microscope measurements of RMS roughness with increasing Cp2Fe flow rate. The island generated by the 3D GaN growth will produce additional edge dislocations during the coalescence, resulting in the increase of the full width at half maximum of the X-ray diffraction rocking curve at the GaN (102) plane faster than that at the GaN (002) plane with increasing Cp2Fe flow rate. Therefore, the Cp2Fe flow rate of 75 sccm, which makes the sheet resistance of GaN as high as 1 ×1010 Ω /\Box, is used to grow AlGaN/GaN HEMT structures with various values of Fe-doped layer thickness, which are processed into devices. All the HEMT devices possess satisfactory turn-off and gate-controlled characteristics. Besides, the increase of Fe-doped layer thickness can improve the breakdown voltage of the HEMT device by 39.3%, without the degradation of the transfer characteristic.
Keywords:high-resistivity GaN  Fe-doped  high electron mobility transistor  metal-organic chemical vapor deposition
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号