首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural characterization and identification of dibenzocyclooctadiene lignans in Fructus Schisandrae using electrospray ionization ion trap multiple-stage tandem mass spectrometry and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry
Authors:Huang Xin  Song Fengrui  Liu Zhiqiang  Liu Shuying
Institution:a Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
b Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
Abstract:The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified. And the lignan components in Schisandra chinensis (Turcz.) Baill. fruits (SCF) and Schisandra sphenanthera Rehd. et Wils. fruits (SSF) were identified by comparing the structural information and fragmentation mechanisms. Then a pair of isobaric compounds was differentiated. Meanwhile these two similar fruits were distinguished. The research results demonstrated that ESI-MSn technique is a sensitive, selective and effective tool for the direct analysis and rapid determination of constituents in complex mixtures from nature products. And these should be useful for the identification of similar compounds and differentiation of similar species from Chinese herbs.
Keywords:Lignans  Schisandra chinensis  Schisandra sphenanthera  Structural information  Electrospray ionization ion trap multiple-stage tandem mass spectrometry  Electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号