首页 | 本学科首页   官方微博 | 高级检索  
     


A computational investigation of the nitrogen-boron interaction in o-(N,N-dialkylaminomethyl)arylboronate systems
Authors:Larkin Joseph D  Fossey John S  James Tony D  Brooks Bernard R  Bock Charles W
Affiliation:National Heart, Lung, and Blood Institute, The National Institutes of Health, Building 50, Bethesda, Maryland 20851, USA.
Abstract:o-(N,N-Dialkylaminomethyl)arylboronate systems are an important class of compounds in diol-sensor development. We report results from a computational investigation of fourteen o-(N,N-dialkylaminomethyl)arylboronates using second-order M?ller-Plesset (MP2) perturbation theory. Geometry optimizations were performed at the MP2/cc-pVDZ level and followed by single-point calculations at the MP2/aug-cc-pVDZ(cc-pVTZ) levels. These results are compared to those from density functional theory (DFT) at the PBE1PBE(PBE1PBE-D)/6-311++G(d,p)(aug-cc-pVDZ) levels, as well as to experiment. Results from continuum PCM and CPCM solvation models were employed to assess the effects of a bulk aqueous environment. Although the behavior of o-(N,N-dialkylaminomethyl) free acid and ester proved to be complicated, we were able to extract some important trends from our calculations: (1) for the free acids the intramolecular hydrogen-bonded B-O-H···N seven-membered ring conformers 12 and 16 are found to be slightly lower in energy than the dative-bonded N→B five-membered ring conformers 10 and 14 while conformers 13 and 17, with no direct boron-nitrogen interaction, are significantly higher in energy than 12 and 16; (2) for the esters where no intramolecular B-O-H···N bonded form is possible, the N→B conformers 18 and 21 are significantly lower in energy than the no-interaction forms 20 and 23; (3) H(2)O insertion reactions into the N→B structures 10, 14, 18, and 21 leading to the seven-membered intermolecular hydrogen-bonded B···OH(2)···N ring structures 11, 15, 19, and 22 are all energetically favorable.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号