首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study of polyoxide clusters Sc20O30, P20O50, Ti20O30F20, and V20O30F20
Authors:O P Charkin  N M Klimenko and D O Charkin
Institution:(1) Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, Chernogolovka, Moscow oblast, 142432, Russia;(2) Lomonosov State Academy of Fine Chemical Technology, pr. Vernadskogo 86, Moscow, 117571, Russia;(3) Moscow State University, Moscow, 119992, Russia
Abstract:The structural, electronic, and vibrational characteristics and energies of the isolated polyoxide clusters Sc20O30, P20O50, Ti20O30F20, and V20O30F20 and ammonia complexes Sc20O30 · nNH3 were calculated by the density functional theory B3LYP method with several basis sets. The computation results show that a fullerene-like closo structure I h with oxygen bridges located above the midpoints of the edges of an empty M20] dodecahedron is preferable for the Ti20O30F20 and V20O30F20 clusters with four-coordinate metal atoms protected by the outer M-F bonds. This structure with a cage diameter of ∼1 nm and the diameter of nearly planar decagonal faces (windows) of ∼0.5 nm is stable to dissociation into fragments and to strong geometric distortions and retains its closo shape when molecules like NH3 and anions like H are attached to the cage. An analogous closo structure is favorable for the P20O50 cluster; however, in this structure, the P20] cage is severely distorted and all 12 windows are strongly corrugated. For Sc20O30, the I h dodecahedron with bare three-coordinate Sc atoms corresponds to a local minimum of the potential energy surface, which is 170–200 kcal/mol less favorable than compact puck-shaped isomers in which four- and five-coordinate metal atoms and three- and four-coordinate oxygen atom prevail. “Solvation” of the dodecahedral and puck-shaped Sc20O30 isomers by ammonia molecules strongly decreases the energy gap between the isomers; however, the dodecahedron I h in all cases remains a high-lying intermediate. According to calculations, most polyoxides under consideration have a high electron affinity (comparable with or higher than that of fullerenes) and is able to add three to five or more alkali-metal atoms to form radical salts in which clusters are in the state of polyanions. Because of large sizes of the M20] cages and their windows, the interior of the cage (as distinct from fullerenes) can accommodate a considerable number of atoms and several small molecules. The V20O30F20 cluster has 20 unpaired electrons and can be treated as a molecular magnet. The properties of the M20] cages depend only slightly on the outer substituents. It is suggested that the pattern will be retained upon the substitution of OH groups for the F atoms and that the hydroxo-substituted clusters can bind to each other through hydrogen bridges and serve as building blocks for self-assembly into ordered nanometer and crystalline structures of various dimensions. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 5, pp. 775–785.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号