首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissociative double electron capture,dynamics of fragmentation of the water and hydrogen sulfide negative ions
Authors:T Keough  JH Beynon  RG Cooks
Institution:Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
Abstract:The technique of ion kinetic energy spectrometry has been used to observe the unimolecular decompositions of H2O?? and H2S?? generated by charge exchange of the corresponding high velocity positive ions. The method involves dissociative double electron capture by a high velocity ion and allows the study of unstable negative ions that may be directly observable by conventional electron capture techniques. Information on the energetics of the reaction is obtained from the kinetic energy of the product ion. The reactions under consideration are shown in (1) and (2) where X = O or S.
The kinetic energy releases accompanying the reactions given in (1) and (2) have been measured and compared to those for the collision-induced reactions which produce the corresponding positive ions. The results have been used to deduce that the sequence of steps in the formation of the fragment negative ions is that given in (1) and (2). The cross section of OH? formation is observed to be somewhat greater than for O? production. This result is in contrast with dissociative electron capture cross sections from the neutral species and is interpreted on the basis of the energetic requirements for the reactions under consideration. H2O? reacts from different electronic states in yielding OH? on the one hand and O? on the other. The energy partitioning associated with reaction (2) suggests that the neutral productions 2H' rather than H2. The kinetic energy losses accompanying excitation and kinetic energy releases upon fragmentation were similar for the corresponding reactions of the sulfur and oxygen-containing ions indicating related mechanisms in the two sets of reactions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号