首页 | 本学科首页   官方微博 | 高级检索  
     


Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars
Authors:Raab Andrea  Hansen Helle R  Zhuang Liuying  Feldmann Jörg
Affiliation:Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, UK.
Abstract:Wool or hair fibre is a metabolically dead material after it has left the epidermis. During growth the fibre in the root is a metabolically very active organ, which is highly influenced by the health status of the living being. Arsenic is one of the elements that is easily taken up by the cells of the root and stored in the fibre afterwards. Here we show that arsenic can quantitatively be extracted by boiling the wool fibre or hair in water. The high intake of arsenic species by the sheep of North Ronaldsay (the seaweed-eating sheep) leads to a high arsenic concentration in wool (mean 5.2+/-2.3 mug g(-1)). The wool of lambs of these sheep, which are not exposed to seaweed, contains about 10 times less arsenic, which is still elevated compared to uncontaminated wool. The arsenic species identified in wool extract are arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)) and monomethylarsonious acid (MMA(III)) as minor species. The major species is dimethylated arsenic DMA in its tri- and pentavalent form (dimethylarsinous acid (DMA(III)) and dimethylarsinic acid (DMA(V))) accounting for 85% of the specified arsenic in the wool which reflects the amount of dimethylated species (i.e. the arsenoribofuranosides) taken up by seaweed being the main food source of the sheep. However, there are unknown arsenic species in the extract, which are not eluting from a strong anion exchange column. In vitro incubation experiments with this kind of wool showed that it has reducing properties but no demethylation was recorded. The absorption ability of the wool for methylated arsenic species is negligible, while inorganic arsenic is easier to be absorbed in the fibre (11-17%). This means that the species integrity is only guaranteed in terms of the degree of methylation but not in terms of their redox status.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号