首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics of two pathways in peroxyoxalate chemiluminescence
Authors:Hadd   Seeber   Birks
Affiliation:Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA.
Abstract:It has been shown that 1,1'-oxalyldiimidazole (ODI) is formed as an intermediate in the imidazole-catalyzed reaction of oxalate esters with hydrogen peroxide. Therefore, the kinetics of the chemiluminescence reaction of 1,1'-oxalyldiimidazole (ODI) with hydrogen peroxide in the presence of a fluorophore was investigated in order to further elucidate the mechanism of the peroxyoxalate chemiluminescence reaction. The effects of concentrations of ODI, hydrogen peroxide, imidazole (ImH), the general-base catalysts lutidine and collidine, and temperature on the chemiluminescence profile and relative quantum efficiency in the solvent acetonitrile were determined using the stopped-flow technique. Pseudo-first-order rate constant measurements were made for concentrations of either H2O2 or ODI in large excess. All of the reaction kinetics are consistent with a mechanism in which the reaction is initiated by a base-catalyzed substitution of hydrogen peroxide for imidazole in ODI to form an imidazoyl peracid (Im(CO)2OOH). In the presence of a large excess of H2O2, this intermediate rapidly decays with both a zero- and first-order dependence on the H2O2 concentration. It is proposed that the zero-order process reflects a cyclization of this intermediate to form a species capable of exciting a fluorophore via the "chemically initiated electron exchange mechanism" (CIEEL), while the first-order process results from the substitution of an additional molecule of hydrogen peroxide to the imidazoyl peracid to form dihydroperoxyoxalate, reducing the observed quantum yield. Under conditions of a large excess of ODI, the reaction is more than 1 order of magnitude more efficient at producing light, and the quantum yield increases linearly with increasing ODI concentration. Again, it is proposed that the slow initiating step of the reaction involves the substitution of H2O2 for imidazole to form the imidazoyl peracid. This intermediate may decay by either cyclization or by reaction with another ODI molecule to form a cyclic peroxide that is much more efficient at energy transfer with the fluorophore. The reaction kinetics clearly distinguishes two separate pathways for the chemiluminescent reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号