首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring the Biocompatibility of Zwitterionic Copolymers for Controlling Macrophage Phagocytosis of Bacteria
Authors:Shaojun Chen  Huanhuan Ren  Zhankui Mei  Haitao Zhuo  Haipeng Yang  Zaochuan Ge
Affiliation:1. Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China;2. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
Abstract:This paper provides a biomaterial derived from zwitterionic polymer for controlling macrophage phagocytosis of bacteria. A series of zwitterionic copolymers, named DMAPS‐co‐AA, are synthesized with 3‐dimethyl (methacryloyloxyethyl) ammonium propane sulfonate (DMAPS) and acrylic acid (AA). The biocompatibility of DMAPS‐co‐AA copolymers can be adjusted by adjusting the DMAPS‐content or pH value. As the DMAPS‐content increases, the biocompatibility of zwitterionic copolymer increases. The zwitterionic copolymers with DMAPS content above 30 wt% have higher biocompatibility. Moreover, the biocompatibility also increases significantly as the pH increases from 3.4 to 7.2. By adjusting the pH above 5.8, the zwitterionic copolymer with lower DMAPS‐content also shows higher biocompatibility. Importantly, after incubation with the DMAPS‐co‐AA copolymer solutions at different pH values, phagocytosis behavior of macrophage RAW264.7 cells can also be adjusted. The phagocytosis of bacteria is enhanced at pH = 7.2. Thus, it is proposed that zwitterionic copolymers can be used for controlling phagocytosis of bacteria.
image

Keywords:bioactivity  biocompatibility  macrophage  phagocytosis  zwitterionic polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号