首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Collective processes during stimulated light scattering
Authors:V G Sidorovich
Institution:1147. D.S. Rozhdestvensky Optical Society, St. Petersburg, 199034, Russia
Abstract:An approach to the analysis of the phase conjugation by stimulated light scattering that is alternative to the mode theory of 3D hologram, which is usually applied for these purposes, has been studied. As is known, the use of the mode theory is based on the phenomenological gain factor of the Stokes wave, which is induced by a pump wave in a nonlinear medium. The approach developed in this work directly considers the interaction between plane components of the pump and Stokes waves via hypersonic gratings of the dielectric permittivity, which the pump and Stokes waves induce in the medium. It has been shown that, as a result of the phase conjugation, two hypersonic gratings participate equally efficiently in the interaction between any pair of plane components of the pump and Stokes waves, with one of these gratings being excited by the interacting waves themselves. The other grating in each such pair is unambiguously identified with a simplest vector diagram. Conditions have been analyzed under which numerous other gratings, which could also participate in the interaction of each pair of plane components of the pump and Stokes waves without violating the Bragg conditions and the joining conditions of the transverse components of the wave vectors at the interface between the two media, contribute negligibly to stimulated light scattering. It has been shown that, if the pump is spatially coherent, the considered approach yields the same results as the standard mode theory does. In October 2011, I reported the results of this work at the Vavilov State Optical Institute at the Memorial Meeting “Half a Century of New Optics in Russia: Lasers, Nonlinear Optics, and Optical Holography” and at the International Conference “Laser Optics—2012” (June 2012).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号