首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的汽油族组成近红外光谱分析方法研究
引用本文:史永刚,刘绍璞,宋世远,张洁,李子存. 基于支持向量机的汽油族组成近红外光谱分析方法研究[J]. 分析测试学报, 2007, 26(3): 343-346,351
作者姓名:史永刚  刘绍璞  宋世远  张洁  李子存
作者单位:西南大学,化学博士后流动站,重庆,400715;后勤工程学院,油料应用工程实验中心,重庆,400016;西南大学,化学博士后流动站,重庆,400715;后勤工程学院,基础部,重庆,400016
摘    要:提出一种基于最小二乘支持向量机(LS-SVM)的汽油族组成近红外光谱分析方法。采用国家标准方法(GB 11132-1989液体石油产品烃类测定法——荧光指示剂吸附法)测定了重庆地区销售的汽油族组成,并采用主成分分析-最小二乘支持向量机建立汽油族组成的预测模型。预测模型对汽油中芳烃和烯烃含量的RMSEC分别为0.2090和0.2142。实验结果表明所建模型具有计算量小,预测准确、可靠,而且操作简单、维护费及测试费用低等特点。

关 键 词:主成分分析  最小二乘支持向量机  近红外光谱  汽油  族组成
文章编号:1004-4957(2007)03-0343-04
收稿时间:2006-04-10
修稿时间:2006-04-102006-07-27

Near Infrared Analysis of Major Classes of Hydrocarbon Constituents in Gasoline with Least Square-Support Vector Machine
SHI Yong-gang,LIU Shao-pu,SONG Shi-yuan,ZHANG Jie,LI Zi-cun. Near Infrared Analysis of Major Classes of Hydrocarbon Constituents in Gasoline with Least Square-Support Vector Machine[J]. Journal of Instrumental Analysis, 2007, 26(3): 343-346,351
Authors:SHI Yong-gang  LIU Shao-pu  SONG Shi-yuan  ZHANG Jie  LI Zi-cun
Affiliation:1. Post-doctorial Research Station of Chemistry, Southwest Normal University, Chongqing 400715, China; 2. Experimental Center for Oil Application, Logistic Engineering College, Chongqing 400016, China; 3. Department of Education, Logistic Engineering College, Chongqing 400016, China
Abstract:A near infrared analysis of major classes of hydrocarbon constituents in gasoline with least square-support vector machine(LS-SVM) was developed.The major classes of hydrocarbon constituents from different gas stations in Chongqing were determined by GB11132-1989 method(i.e.standard test method for hydrocarbon types in liquid petroleum products by fluorescent indicator adsorption).A prediction model was then established using the Principal Component Analysis(PCA)-LS-SVM.With the prediction model,the RMSEC(root mean square error of calibration) for aromatics and olefins in gasolines were 0.209 0 and 0.214 2,respectively.Experimental results showed that the developed model was easy to operate,reliable and less analysis cost.
Keywords:PCA  LS-SVM  Near infrared analysis  Gasoline  Major classes of hydrocarbon constituent
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号