一种改进差分进化的自动聚类算法研究 |
| |
摘 要: | K-means算法需要提前确定聚类数量和初始聚类中心.为了解决这个问题,提出了一种基于改进的差分进化算法DVDE的自动聚类算法(AC-DVDE).使用双交叉策略来添加基于个体间聚类的随机交叉策略,用于在传统的两点交叉操作之后的自动聚类中使用的特定编码方法;提出了用于聚类中心选择的随机交叉策略,聚类中心很可能偏离数据集或聚类中心太过集中的问题,通过改进,有效地避免算法本身随机性的错误聚类划分,首先筛选聚类中心,再进行聚类.通过比较UCI的四个数据集的仿真结果,提高了算法的聚类精度和稳定性,具有一定的价值.
|
本文献已被 CNKI 等数据库收录! |
|