首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reversible carbon-carbon bond formation between 1,3-dienes and aldehyde or ketone on nickel(0)
Authors:Ogoshi Sensuke  Tonomori Kei-ichi  Oka Masa-aki  Kurosawa Hideo
Institution:Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. ogoshi@chem.eng.osaka-u.ac.jp
Abstract:The reversible oxidative cyclization of dienes and aldehydes with nickel(0) proceeded to give eta(3):eta(1)-allylalkoxynickel complexes. The treatment of these complexes with carbon monoxide led to the formation of the corresponding lactone and/or the regeneration of a butadiene and an aldehyde concomitant with the formation of Ni(CO)(3)(PCy(3)). The scission of the nickel-oxygen bond of the allylalkoxy complexes with ZnMe(2) leading to eta(3)-allyl(methyl)nickel was very efficient to suppress the reverse reaction of the oxidative cyclization. The methylated eta(3)-allylnickel compound underwent the reductive elimination. The carbonylative coupling reaction of the eta(3)-allyl(methyl)nickel proceeded as well under a carbon monoxide atmosphere. Similarly, the addition of Me(3)SiCl to eta(3):eta(1)-allylalkoxynickel complexes was also efficient for the inhibition of the reverse reaction. The resulting eta(3)-1-siloxyethylallylnickel complex was treated with carbon monoxides followed by the addition of MeOH to give the expected hydroxyester. This method is efficient as well even for the eta(3):eta(1)-allyl(alkoxy)nickel complex containing acetone as a component, which was so prone to undergo the reverse reaction hampering its isolation. The isolation of the eta(3):eta(1)-allylalkoxynickel complex containing ketone as a component was made easier by the use of heavier butadiene and ketone, such as 2,3-dibenzyl-1,3-butadiene and benzophenone or by the use of cyclobutanone. The reaction with styrene oxide gave the eta(3):eta(1)-allylalkoxynickel containing phenylacetoaldehyde, an isomer of styrene oxide.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号