首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal decomposition characteristics of Alder-ene adduct of diallyl bisphenol A novolac with bismaleimide: effect of stoichiometry, novolac molar mass and bismaleimide structure
Authors:C GouriC.P Reghunadhan Nair  R RamaswamyK.N Ninan
Affiliation:Propellants and Special Chemicals Group, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India
Abstract:The addition-cured blends of diallyl bisphenol A formaldehyde resin (ABPF) with various bismaleimides (BMIs) were evaluated for thermal stability and degradation behavior by thermogravimetric analysis (TGA). TGA of the blend of ABPF and 2,2-bis 4-[(4-maleimido phenoxy) phenyl] propane (BMIP) with varying maleimide to allylphenol stoichiometry indicated that the thermal stability of the system was only marginally improved by the increase in BMI stoichiometry in the blend. The effect of BMI structure on thermal stability was studied using four different BMIs, viz. bis (4-maleimido phenyl) methane (BMIM), bis (4-maleimido phenyl) ether (BMIE), bis (4-maleimido phenyl) sulfone (BMIS) and BMIP. TGA showed a two stage decomposition pattern for BMIS system and a single stage for all the other three. The thermograms of BMIM and BMIE were identical and superior to that of BMIS; the latter showing a relatively poor performance at lower temperatures. Compared to the BMI-adduct of monomeric diallyl bisphenol A (DABA), the polymeric analog viz. ABPF system exhibited better thermal stability. Non-isothermal kinetic analyses of the different systems showed the decomposition occurring in at least two kinetic steps. The computed activation energy exhibited a direct correlation to the relative thermal stability of the systems.
Keywords:Allyl functional novolac   Bismaleimide   Alder-ene reaction   Thermogravimetry   Non-isothermal kinetics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号