首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly(ε-caprolactone)
Authors:U.S Ishiaku  K.W PangW.S Lee  Z.A.Mohd Ishak
Affiliation:School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
Abstract:The mechanical, morphological and biodegradation properties of two types of poly(ε-caprolactone)/sago starch (PCL/sago) composites were investigated i.e. dried granulated sago starch and undried thermoplastic sago starch (TPSS). Thermoplastic starch was extruded with a twin screw extruder model Haake Rheomix (TW100 attached to a Haake Rheometer (Haake Rheodrive 5000). The composites were compounded with a Haake internal mixer (Haake Rheomix 3000) attached to the Haake Rheometer. Tensile properties were determined with the Monsanto Tensometer T10. A Shimadzu UV-160A visible UV spectrophotometer was used to monitor the liberation of carbohydrate as a consequence of starch hydrolysis by α-glucoamylase. Determining the weight loss of composites as well as the acid liberated from PCL also monitored biodegradation. The results indicate that dried granulated sago starch function better as fillers in terms of mechanical properties and the ease of biodegradation. However, TPSS imparted better yield strength to the composites. Poor wetting of starch accounts for the decreased mechanical properties at higher starch concentration as agglomeration occurs. While the rigid granular starch retained their shape in the composites, thermoplastic starch that is surrounded by microvoids is easily deformed due to plasticization.
Keywords:Sago starch/polycaprolactone composites   Granular starch   Thermoplastic starch   Mechanical properties   Morphology   Biodegradable
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号