首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of fluorine on the phase behavior of bis-p-tolyl propane in supercritical CO2, 1,1-difluoroethane,and 1,1,1,2-tetrafluoroethane
Authors:Jun Liu  Dan Li  Hun Soo Byun  Mark A McHugh
Institution:Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
Abstract:Fluorine substitution on a solute can have a significant effect on solute solubility in a given solvent and fluorine substitution on a solvent can also have a significant effect on solvent quality. The effect of fluorine is demonstrated with the phase behavior data for bis(p-tolyl)propane (BTP) compared to bis(p-tolyl)hexafluoropropane (BTHFP) in supercritical carbon dioxide, 1,1-difluoroethane (F152a), and 1,1,1,2-tetrafluoroethane (F134a). Semifluorinated BTHFP is more soluble than non-fluorinated BTP in all three solvents, especially CO2. The CO2–BTP system exhibits solid solubility behavior while the CO2–BTHFP system exhibits liquid–liquid–vapor (LLV) behavior near the critical point of CO2. Although the two dipolar hydrofluorocarbons (HFC) are better solvents than CO2 for these two aromatic solid compounds, F152a is the superior HFC solvent, especially for BTP, because F152a has a smaller molar volume and a larger effective dipole moment than F134a. LLV behavior is also observed for the F134a–BTP system near the critical point of F134a although the F134a–BTHFP, F152a–BTP, and F152a–BTHFP systems all appear to exhibit type-I phase behavior and no liquid–liquid immiscibility near the respective critical points.
Keywords:Supercritical fluid  Carbon dioxide  1  1-Difluoroethane  1  1  1  2-Tetrafluoroethane  F134a  F152a
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号