首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4g and ENV435g
Authors:Walker Sharon L
Institution:

Department of Chemical and Environmental Engineering, University of California at Riverside, Bourns Hall B355, Riverside, CA 92521, USA

Abstract:The adhesion kinetics of Burkholderia cepacia G4g and ENV435g have been investigated in a radial stagnation point flow (RSPF) system under well-controlled hydrodynamics and solution chemistry. The sensitivity of adhesion behavior to nutrient condition was also examined. Supplementary cell characterization techniques were conducted to evaluate the viability, hydrophobicity, electrophoretic mobility, size, and charge density of cells grown in both nutrient rich Luria broth (LB) and nutrient poor basal salts medium (BSM). Comparable adhesion kinetics were observed for the wild-type (G4g) and mutant (ENV435g) grown in the same medium; however, the attachment efficiency increased with the level of nutrient presence for both cell types by approximately 60%. Nutrient condition altered deposition due to its impact on the surface charge characteristics and size of the cells. Adhesion behavior was consistent with expectations based on classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory for colloidal interactions, as the adhesion efficiency increased with ionic strength. However, the results also suggest the involvement of non-DLVO type interactions that influence cell adhesion. Systematic experimentation with B. cepacia in the RSPF system demonstrated that the ENV435g mutant is not “adhesion deficient”; rather, adhesion for both the G4g and ENV435g was a function of the nutrient condition and resulting cell surface chemistry.
Keywords:B  cepacia  Radial stagnation point flow  Bacterial adhesion  Hydrophobicity  Electrophoretic mobility
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号