首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-phase structure above hot surfaces in jet impingement boiling
Authors:L Bogdanic  H Auracher and F Ziegler
Institution:(1) Technische Universit?t Berlin, Marchstra?e 18, 10587 Berlin, Germany
Abstract:Jet impingement boiling is very efficient in cooling of hot surfaces as a part of the impinging liquid evaporates. Several studies have been carried out to measure and correlate the heat transfer to impinging jets as a function of global parameters such as jet subcooling, jet velocity, nozzle size and distance to the surface, etc. If physically based mechanistic models are to be developed, studies on the fundamentals of two-phase dynamics near the hot surface are required. In the present study the vapor–liquid structures underneath a subcooled (20 K) planar (1 mm × 9 mm) water jet, impinging the heated plate vertically with a velocity of 0.4 m/s, were analyzed by means of a miniaturized optical probe. It has a tip diameter of app. 1.5 μm and is moved toward the plate by a micrometer device. The temperature controlled experimental technique enabled steady-state experiments in all boiling regimes. The optical probe data provides information about the void fraction, the contact frequencies and the distribution of the vapor and liquid contact times as a function of the distance to the surface. The measured contact frequencies range from 40 Hz at the onset of nucleate boiling to nearly 20,000 Hz at the end of the transition boiling regime. Due to condensation in the subcooled jet vapor disappears at a distance to the surface of app. 1.2 mm in nucleate boiling. This vapor layer becomes smaller with increasing wall superheat. In film boiling a vapor film thickness of 8 ± 2 μm was found.
Keywords:Jet impingement boiling  Optical probe  Void fraction  Contact frequencies
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号