首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soot primary particle formation from multiscale coarse-grained molecular dynamics simulation
Authors:Angela Violi
Institution:Department of Mechanical Engineering, The University of Michigan, 2150 G.G. Brown, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA
Abstract:A new multiscale coarse-graining procedure is used to study carbonaceous nanoparticle agglomeration in combustion environments. The computational methodology is applied to an ensemble of 10,000 nanoparticles (or effectively 2 million total carbon atoms) to simulate, for the first time, the agglomeration of carbonaceous nanoparticles using coarse-grained atomistic-scale information. In particular, with the coarse-graining approach we are able to assess the influence of nanoparticle morphology and temperature on the agglomeration process. The coarse-graining of the interparticle force field is accomplished applying a force-matching procedure to data obtained from trajectories and forces from all-atom MD simulations. The coarse-grained MD results show rich and varied clustering behaviors for different particle morphology and, in some cases, the formation of primary particles with a diameter around 15 nm are observed for the first time by molecular simulation techniques.
Keywords:Molecular dynamics  Coarse-graining  Primary particles  Soot
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号