首页 | 本学科首页   官方微博 | 高级检索  
     


Hunting for homoclinic orbits in reversible systems: A shooting technique
Authors:Alan R. Champneys  Alastair Spence
Affiliation:(1) School of Mathematical Sciences, University of Bath, Claverton Down, BA2 7AY Bath, UK
Abstract:A dynamical system is said to be reversible if there is an involution of phase space that reverses the direction of the flow. Examples are Hamiltonian systems with quadratic potential energy. In such systems, homoclinic orbits that are invariant under the reversible transformation are typically not destroyed as a parameter is varied. A strategy is proposed for the direct numerical approximation to paths of such homoclinic orbits, exploiting the special properties of reversible systems. This strategy incorporates continuation using a simplification of known methods and a shooting approach, based on Newton's method, to compute starting solutions for continuation. For Hamiltonian systems, the shooting uses symplectic numerical integration. Strategies are discussed for obtaining initial guesses for the unknown parameters in Newton's method. An example system, for which there is an infinity of symmetric homoclinic orbits, is used to test the numerical techniques. It is illustrated how the orbits can be systematically located and followed. Excellent agreement is found between theory and numerics.This paper is presented as an outcome of the LMS Durham Symposium convened by Professor C.T.H. Baker on 4–14 July 1992 with support from the SERC under grant reference number GR/H03964.
Keywords:Homoclinic orbit  reversible system  Hamiltonian system  continuation  shooting  Newton's method  infinite number of solutions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号