首页 | 本学科首页   官方微博 | 高级检索  
     


CO adsorption on oxygen-modified molybdenum surfaces
Authors:N.V. Petrova
Affiliation:Institute of Physics of National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03028, Ukraine
Abstract:Structures of carbon monoxide layers on the oxygen-modified Mo(1 1 0) and Mo(1 1 2) surfaces have been investigated by means of density-functional (DFT) calculations. It is found that CO molecules adsorb at hollow sites on the O/Mo(1 1 0) surface and nearly atop Mo atoms on the O/Mo(1 1 2) surface. The favorable positions for adsorption are shown to be near protrusions of electron density above the Mo surface atoms. The presence of oxygen on the molybdenum surface significantly reduces the binding energy of the CO molecule with the substrate; on the oxygen-saturated Mo(1 1 0) surface, the adsorption of CO is completely blocked. The calculated local densities of states (LDOS) demonstrate that the O 2s peak for O adsorbed on Mo(1 1 0) surface is at −19 eV (with respect to the Fermi level), while for the oxygen atom of an adsorbed CO molecule the related 3σ molecular orbital gives rise to a peak at −23 eV. This difference stems from the bonding of the O atom either with Mo surface for adsorbed O or with C atom in adsorbed CO, and therefore the position of the O 2s peak in photoemission spectra can serve as a convincing argument in favor of either the presence or absence of the CO dissociation on Mo surfaces.
Keywords:A. Surfaces   C. Ab initio calculations   D. Surface properties   D. Electronic structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号