首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Highly branched and high‐molecular‐weight polyethylenes produced by 1‐[2,6‐bis(bis(4‐fluorophenyl)methyl)‐4‐MeOC6H2N]‐2‐aryliminoacenaphthylnickel(II) halides
Authors:Ruikai Wu  Yifan Wang  Liwei Guo  Cun‐Yue Guo  Tongling Liang  Wen‐Hua Sun
Abstract:A series of unsymmetrical 1‐2,6‐bis(bis(4‐fluorophenyl)methyl)‐4‐MeOC6H2N]‐2‐aryliminoacenaphthene‐nickel(II) halides has been synthesized and fully characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (1H NMR), 13C NMR, and 19F NMR spectroscopy as well as elemental analysis. The structures of Ni1 and Ni6 have been confirmed by the single‐crystal X‐ray diffraction. On activation with cocatalysts either ethylaluminum sesquichloride or methylaluminoxane, all the title nickel complexes display high activities toward ethylene polymerization up to 16.14 × 106 g polyethylene (PE) mol?1(Ni) h?1 at 30 °C, affording PEs with both high branches (up to 103 branches/1000 carbons) and molecular weight (1.12 × 106 g mol?1) as well as narrow molecular weight distribution. High branching content of PE can be confirmed by high temperature 13C NMR spectroscopy and differential scanning calorimetry. In addition, the PE exhibited remarkable property of thermoplastic elastomers (TPEs) with high tensile strength (σb = 21.7 MPa) and elongation at break (εb = 937%) as well as elastic recovery (up to 85%), indicating a better alternative to commercial TPEs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 130–145
Keywords:branched  cationic polymerization  elastomers  high molecular weight  nickel precatalyst
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号