首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanical properties of UV‐curable carbon fiber‐reinforced polymer composite patch: Repair evaluation of damaged aluminum alloy
Authors:Yannan He  Xiaoyan Liu  Zhiqiang Yu
Abstract:Epoxy resin composite patches reinforced by carbon fiber were prepared through ultraviolet (UV)–curing method, and the damaged aluminum alloy plates are rapidly repaired by means of adhesively bonding method. Mechanical properties of the composite patches and damaged aluminum alloy plates before and after repair were studied by experiment and numerical simulation. Results indicated that the tensile properties of carbon fiber/epoxy resin composite patches presented the tendency of first increase and then decrease with the increase of layer numbers of reinforced fiber. The composite patches with two layers fiber showed the best tensile properties, and the tensile strength and modulus reached 1.13 GPa and 27.79 GPa, respectively. However, the bending strength of composite patches decreased with the increase of layer numbers. Results of performance evaluation on the mechanical properties of damaged aluminum alloy plates repaired by the two layers carbon fiber/epoxy resin composite patches showed that the repair efficiency of tensile and bending properties of the repaired aluminum alloys reached more than 83% and 160%, respectively, compared with the undamaged aluminum alloys. Besides, results of numerical simulation showed that the stress intensity factor (SIF) of the crack tip on repaired aluminum alloy plates decreased significantly in comparison with the unrepaired aluminum alloy plates, which further revealing the reinforced mechanism of composite patches on the bending properties of repaired aluminum alloy plates.
Keywords:finite element analysis (FEA)  mechanical properties  polymer composite patches  repair materials  ultraviolet light curing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号