首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and kinetic study on the thermal degradation of triblock copolymer of polycaprolactone‐poly (glycidyl nitrate)‐polycaprolactone (PCL‐PGN‐PCL) as an energetic binder
Authors:Fatemeh Abrishami  Narges Zohari  Vida Zeynali
Abstract:In this study, an energetic binder is synthesized via ring opening copolymerization of ε‐caprolactone with poly (glycidyl nitrate) (PGN) of low molecular weight (Mn = 1350 g mol?1) as a macroinitiator to form triblock copolymer polycaprolactone‐PGN‐polycaprolactone (PCL‐PGN‐PCL) (Mn = 4128 g mol?1). The effects of catalyst type and its concentration, reaction time, and solvent are investigated in this polymerization reaction. The resulting triblock copolymer is characterized by Fourier transform infrared spectroscopy (FT‐IR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The DSC result shows that the glass transition temperature of triblock copolymer (Tg = ?50°C) is lower than PGN (Tg = ?35°C). Also, the decomposition kinetics of this energetic binder is studied by DSC, TGA, and its derivative (DTG). An advanced isoconversional method is applied for kinetic analysis. Activation energy is calculated by Flynn‐Wall‐Ozawa (FWO) and Kissinger methods. The resulting activation energy from Kissinger method for the first and the second steps are 42.98 and 74.56 kJ mol?1, respectively. Also, it is found from FWO results that the activation energy for the copolymer increases with degradation degree (α).
Keywords:activation energy  energetic binder  isoconversional method  poly (glycidyl nitrate)  polycaprolactone
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号