首页 | 本学科首页   官方微博 | 高级检索  
     


Melt‐blending of unmodified and modified cellulose nanocrystals with reduced graphene oxide into PLA matrix for biomedical application
Authors:Nidhi Pal  Somesh Banerjee  Partha Roy  Kaushik Pal
Abstract:In this article, we successfully fabricated the bionanocomposites using cellulose nanocrystals (CNCs) and reduced graphene oxide (rGO) reinforced into biodegradable polylactic acid (PLA) matrix through melt‐mixing method. Due to the affinity difference between hydrophilic CNC and hydrophobic PLA, the surface modification of CNC was employed using quaternary ammonium salts (CTAB) as a surfactant. The nanocomposites were developed using different blend ratios of CNC/modified CNC (1, 2, and 3) wt% and (0.5 wt%) rGO into the polymer matrix. The morphology of CNC, q‐CNC (modified CNC), and nanocomposites were inspected by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is demonstrated from tensile tests that, the nanocomposite with 1 wt% CNC and rGO showed maximum tensile strength compared with PLA and its nanocomposites. Moreover, the nanocomposite with 1 wt% CNC and rGO was also having maximum thermal stability. From cytotoxicity evaluation, it is observed that all the nanocomposites are nontoxic and cytocompatible to HEK293 cells. In addition to this, the nanocomposite with q‐CNC showed enhanced barrier properties compared with PLA and PLA/CNC/rGO nanocomposite. The results obtained from different characterizations showed that the incorporation of surfactant onto CNC improved the dispersion in PLA but at the same time deteriorated the PLA matrix.
Keywords:cellulose nanocrystal  melt‐mixing  polylactic acid  quaternary ammonium salt
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号