首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Piezoelectric property improvement of polyethylene ferroelectrets using postprocessing thermal‐pressure treatment
Authors:Ouassim Hamdi  Frej Mighri  Denis Rodrigue
Abstract:In this work, biaxially stretched polymer foams with well‐defined cellular structures were prepared from polyethylene via blown‐film extrusion and subjected to corona charging to produce a piezoelectric response. The charging parameters were first optimized in terms of charging voltage and needle distance, as well as the gas type and pressure to investigate their effect on the piezoelectric coefficient (d33). The results show that samples charged under nitrogen (N2) at 100 kPa had better d33 coefficient than those charged under ambient air or N2 at 20 kPa. Moreover, 2 different thermal pressure treatments were imposed to obtain an optimized eye‐like cellular structure with different cell aspect ratios (AR). The results showed that when the cells were elongated in both the longitudinal and transverse directions (higher AR), higher d33 coefficients were achieved. From all the samples produced, the best results were obtained for a longitudinal aspect ratio (AR‐L) of 7.1, a transversal aspect ratio (AR‐T) of 4.6, and a relative foam density of 0.52 leading to a d33 coefficient of 935 pC/N. This coefficient was further increased using reverse charging and multilayered films, reaching a maximum of 2550 pC/N. This value is much higher than typical ones reported so far for any polyethylene and polypropylene ferroelectrets. These results could increase the use of polyethylene in piezoelectric applications as these materials are very attractive for the large‐scale production of electret‐based sensors and transducers due to their low cost and easy processing.
Keywords:cellular structure  ferroelectrets  optimization  polyethylene  posttreatment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号