Abstract: | We incorporate the Boltzmann factors for inter‐monomer bending energy into the monomer growth direction choice in Rosenbluth's algorithm to model chains of arbitrary nearest‐neighbor rigidity. This allows for the consideration of compact (bent state lower in energy), free (straight and bent state equal in energy), or extended chains (bent state higher). We validate against, and compare to, various other results, showing very good agreement with known results for short chains and demonstrate the ability to model chains up to 500 segments long, far beyond the length at which the normal Rosenbluth method becomes unstable for reasonable nonzero bending energies. This approach is easily generalizable both to other energies determinable during chain growth, for example, polymers composed of more than one type of monomer with differing monomer interaction energies, as well as to other chain production algorithms. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1684–1691 |