首页 | 本学科首页   官方微博 | 高级检索  
     


Highly alkaline stable anion exchange membranes from nonplanar polybenzimidazole with steric hindrance backbone
Authors:Hongmei Ma  Hong Zhu  Zhongming Wang
Abstract:The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096
Keywords:alkaline stability  anion exchange membranes  copolymerization  fuel cells  functionalization of polymers  high performance polymers  membranes  microwave condensation  polybenzimidazole
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号