首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio molecular dynamics simulations study on initial decompositions of β‐HMX at high temperature coupled with high pressures
Authors:Dong Xiang  Guangfu Ji  Weihua Zhu
Abstract:We performed ab initio molecular dynamics simulations to investigate initial decomposition mechanisms and subsequent chemical processes of β‐HMX (cyclotetramethylene tetranitramine) (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine) crystals at high temperature coupled with high pressures. It was found that the initial decomposition step is the simultaneous C–H and N–NO2 bond cleavage at 3,500 K. When the pressure (1–10 GPa) is applied, the first reaction steps are primarily the C–N and C–H bond fission at 3,500 K. The C–H bond cleavage is a triggering decomposition step of the HMX crystals at 3,500 K coupled with 16 GPa. This indicates that the C–H bonds are much easier to be broken and the hydrogen radicals are much more active. The applied pressures (1–10 GPa) accelerate the decompositions of HMX at 3,500 K. The decomposition pathways and time evolution of the main chemical species demonstrate that the temperature is the foremost factor that affects the decomposition at high pressures (1–10 GPa). However, the decomposition of HMX is dependent on both the temperature (3,500 K) and the pressure (16 GPa). This work will enrich the knowledge of the decompositions of condensed energetic materials under extreme conditions.
Keywords:ab initio molecular dynamics  β  ‐HMX  high temperature and high pressures  initial decomposition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号