首页 | 本学科首页   官方微博 | 高级检索  
     


Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory
Authors:Mahdi Shirazi  Simon D. Elliott
Affiliation:Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
Abstract:To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three‐dimensional on‐lattice kinetic Monte‐Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk‐like and OH‐terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD. © 2013 Wiley Periodicals, Inc.
Keywords:density functional theory  kinetic Monte‐Carlo  atomic layer deposition  chemical vapor deposition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号