首页 | 本学科首页   官方微博 | 高级检索  
     


Toward the understanding of the environmental effects on core ionizations
Authors:Adèle D. Laurent  Vitaly N. Glushkov  Thibaut Very  Xavier Assfeld
Affiliation:1. CEISAM, UMR CNRS 6230, BP 92208, Université de Nantes, France;2. Department of Physics, Electronics and Computer Systems, Oles Gonchar Dnipropetrovsk National University, Ukraine;3. Université de Lorraine, CNRS, Théorie‐Modélisation‐Simulation, France
Abstract:Experimental X‐ray absorption spectra are extensively used to determine electronic structure of small molecules but remain difficult to exploit for proteins due to the large number of peaks within their spectra. For such complex systems, theoretical tools like quantum mechanics/molecular mechanics methodology can greatly ease the assignment of the spectra. This study presents a systematic methodology to evaluate core‐ionization energies (Eion) in proteins with the help of the asymptotic projection approach (Glushkov and Tsaune, Z. Vichislit. Matem. Mat. Fiz. 1985, 25, 298; Glushkov, Chem. Phys. Lett. 1997, 273, 122; Glushkov, Chem. Phys. Lett. 1998, 287, 189; Glushkov, J. Math. Chem. 2002, 31, 91; Glushkov, Opt. Spectrosc. 2002, 93, 15). An in‐depth inspection of Eion of systems of increasing complexity is considered, going from amino acids to polyglycine and to glycine in human serum albumin (HSA). Computational analysis can help to better understand experimental data and to discriminate environmental effects by tracing them back to individual and collective electrostatic contributions. In the present work, it was found that Eion of alpha carbon of glycine residues in HSA ranges from 285 to 295 eV depending on their surroundings. © 2014 Wiley Periodicals, Inc.
Keywords:core ionizations  asymptotic projection  QM/MM  amino acids  human serum albumin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号