首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coherent phonon excitation and linear thermal expansion in structural dynamics and ultrafast electron diffraction of laser-heated metals
Authors:Tang Jau
Institution:Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei 11529, Taiwan. jautang@gate.sinica.edu.tw
Abstract:In this study, we examine the ultrafast structural dynamics of metals induced by a femtosecond laser-heating pulse as probed by time-resolved electron diffraction. Using the two-temperature model and the Grüneisen relationship we calculate the electron temperature, phonon temperature, and impulsive force at each atomic site in the slab. Together with the Fermi-Pasta-Ulam anharmonic chain model we calculate changes of bond distance and the peak shift of Bragg spots or Laue rings. A laser-heated thin slab is shown to exhibit "breathing" standing-wave behavior, with a period equal to the round-trip time for sound wave and a wavelength twice the slab thickness. The peak delay time first increases linearly with the thickness (<70 nm for aluminum and <200 nm for gold), but becomes less dependent if further thickness increases. Coherent phonon excitation and propagation from the stressed bulk atoms due to impulsive forces as well as the linear thermal expansion due to lattice temperature jump are shown to contribute to the overall structural changes. Differences between these two mechanisms and their dependence on film thickness and other factors are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号