首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deciphering Iron‐Dependent Activity in Oxygen Evolution Catalyzed by Nickel–Iron Layered Double Hydroxide
Authors:Seunghwa Lee  Lichen Bai  Xile Hu
Abstract:Nickel iron oxyhydroxide is the benchmark catalyst for the oxygen evolution reaction (OER) in alkaline medium. Whereas the presence of Fe ions is essential to the high activity, the functions of Fe are currently under debate. Using oxygen isotope labeling and operando Raman spectroscopic experiments, we obtain turnover frequencies (TOFs) of both Ni and Fe sites for a series of Ni and NiFe layered double hydroxides (LDHs), which are structurally defined samples of the corresponding oxyhydroxides. The Fe sites have TOFs 20–200 times higher than the Ni sites such that at an Fe content of 4.7 % and above the Fe sites dominate the catalysis. Higher Fe contents lead to larger structural disorder of the NiOOH host. A volcano‐type correlation was found between the TOFs of Fe sites and the structural disorder of NiOOH. Our work elucidates the origin of the Fe‐dependent activity of NiFe LDH, and suggests structural ordering as a strategy to improve OER catalysts.
Keywords:active sites  electrocatalysis  nickel iron oxyhydroxide  oxygen evolution reaction  Raman spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号