Abstract: | Current approaches to synthesize π‐conjugated polymers (CPs) are dominated by thermally driven, transition‐metal‐mediated reactions. Herein we show that electron‐deficient Grignard monomers readily polymerize under visible‐light irradiation at room temperature in the absence of a catalyst. The product distribution can be tuned by the wavelength of irradiation based on the absorption of the polymer. Conversion studies are consistent with an uncontrolled chain‐growth process; correspondingly, chain extension produces all‐conjugated n‐type block copolymers. Preliminary results demonstrate that the polymerization can be expanded to donor–acceptor alternating copolymers. We anticipate that this method can serve as a platform to access new architectures of n‐type CPs without the need for transition‐metal catalysis. |