Abstract: | Ligand‐protected gold nanoclusters (AuNCs) have emerged as a new class of electrochemiluminescence (ECL) luminophores for their interesting catalytic and emission properties, although their quantum yield (ΦECL) in aqueous medium is low with a poor mechanistic understanding of the ECL process. Now it is shown that drying AuNCs on electrodes enabled both enhanced electrochemical excitation by an electrocatalytic effect, and enhanced emission by aggregation‐induced ECL (AIECL) for 6‐aza‐2‐thiothymine (ATT) protected AuNCs with triethylamine (TEA) as a coreactant. The dried ATT‐AuNCs/TEA system resulted in highly stable visual ECL with a ΦECL of 78 %, and a similar enhancement was also achieved with methionine‐capped AuNCs. The drying enabled dual‐enhancement mechanism has solved a challenging mechanistic problem for AuNC ECL probes, and can guide further rational design of ECL emitters. |