首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An axisymmetric poroelastic finite element formulation.
Authors:Y J Kang  B K Gardner  J S Bolton
Institution:School of Mechanical and Aerospace Engineering, Seoul National University, Korea.
Abstract:In the past, various two- and three-dimensional Cartesian, poroelastic finite element formulations have been proposed and demonstrated. Here an axisymmetric formulation of a poroelastic finite element is presented. The intention of this work was to develop a finite element formulation that could easily and efficiently model axisymmetric sound propagation in circular structures having arbitrary, axially dependent radii, and that are lined or filled with elastic porous sound absorbing materials such as foams. The formulation starts from the Biot equations for an elastic porous material expressed explicitly in axisymmetric form. By following a standard finite element development, a u-U formulation results. Procedures for coupling the axisymmetric elements to an adjacent acoustical domain are described, as are the boundary conditions appropriate for unfaced foams. Calculations described here show that the present formulation yields predictions as accurate as a Cartesian, three-dimensional model in much reduced time. Predictions made using the present model are also compared with measurements of sound transmission through cylindrical foam plugs, and the predicted results are shown to agree well with the measurements. Good agreement was also found in the case of sound transmission through a conical foam plug.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号