首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rydberg states in the D layer of the atmosphere and the GPS positioning errors
Authors:G V Golubkov  M G Golubkov  M I Manzhelii
Institution:1. Semenov Institute of Chemical Physics Russian Academy of Sciences, Moscow, Russia
2. Center of Chemical Atmosphere Physics, Moscow, Russia
Abstract:The noncoherent radiation in the frequency range 0.8–8.0 (GHz) formed in the D layer of the ionosphere at high solar activity due to transitions between Rydberg states is considered. The emitting layer thickness located 80–110 km above ground surface is estimated. A complicated irregular behavior of the frequency dependence of the radiation intensity for different values of å electron concentration n e and temperature T e due to different characteristics of electron scattering on the nitrogen and oxygen molecules is revealed. The dependences of the flux power of UHF radiation from the D layer in the indicated frequency range on the concentration and temperature of free electrons are calculated. It is shown that, at a frequency of ν = 1.44 GHz, the UHF radiation spectrum features a characteristic waist point, the position of which is almost independent of the electron temperature T e ; i.e., a one-parameter dependence of the power flux on the electron n e density takes place. In the frequency range of 4.0–8.0 GHz, the radiation spectrum exhibits a family of curves that, for each value of n e and a wide range of T e , give rise to a relationship known as the “bottleneck.” It was found that, with increasing frequency, the bottleneck moves upwards along a curve described by a quadratic dependence on the radiation frequency. For a frequency of ~5 GHz, and a certain range of temperature T e and electron concentration within 5 · 103 cm?3 < n e < 2 · 104 cm?3, an almost linear dependence of the UHF radiation power on n e is observed. A comparative analysis of GPS signal delays at frequencies ν f (1) = 1.57 and ν f (2) ≈ 5 GHz for various states of the ionosphere is performed. It is shown that, under the same condition, the use of the second frequency is more advantageous and informative. The ways of further development of the theory and experiment in studying the role of quantum resonant properties in the distortion of global satellite positioning system signals and in solving the fundamental problem of their elimination are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号