首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The excited states and vibronic spectroscopy of diphenyldiacetylene and diphenylvinylacetylene
Authors:Sebree Joshua A  Zwier Timothy S
Institution:Department of Chemistry, Purdue University, West Lafayette, IN 47909-2084, USA.
Abstract:Laser induced fluorescence (LIF) excitation scans and dispersed fluorescence (DFL) spectra have been recorded for two four-carbon α,ω-diphenyl systems, diphenyldiacetylene (DPDA, φ-C≡C-C≡C-φ) and trans-diphenylvinylacetylene (DPVA, φ-CH≡CH-C≡C-φ) as isolated molecules cooled in a supersonic expansion. While these molecules have similar conjugation length, they exhibit strikingly different vibronic spectroscopy and photophysics. The near-UV LIF excitation spectrum of diphenyldiacetylene has its electronic origin at 32,158 cm(-1), and a strong progression in the C≡C stretch (2156 cm(-1)). All transitions are inherently broad, with widths of ~30 cm(-1) fwhm or greater. The S(1) origin DFL spectrum is composed of sharp transitions with Franck-Condon activity mirroring that in the excitation spectrum, and broad emission shifted well to the red ascribable to phosphorescence on the μs timescale. Using ab initio calculations, it is possible to show that DPDA exists as a single, planar conformer with D(2h) symmetry. In contrast, trans-diphenylvinylacetylene shows intense sharp transitions in both LIF and DFL spectra with an S(0)-S(1) origin of 31,183.2 cm(-1) and long progressions involving the in-plane fundamentals ν(53) (bridge-phenyl bending) and ν(51) (bridge-phenyl stretch). A sharp reduction in fluorescence yield in DPVA occurs within 300 cm(-1) of the S(1) origin. Possible causes for the photophysical processes occurring in the two molecules are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号