首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Recent advances in spectroelectrochemistry related to molecular catalytic processes
Authors:Charles W Machan
Institution:Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA
Abstract:Continuing interest in renewable energy utilization, the depletion of nonrenewable petrochemical feedstocks and rising atmospheric concentrations of CO2 from anthropogenic emissions have made molecular electrocatalytic processes involving CO2, H2, and O2 important research foci. One of the touted advantages of molecular electrocatalytic processes, in comparison to heterogeneous systems, is the relative ease with which the active species can be characterized and the catalyst optimized using synthetic methodology. This requires, however, that species generated by the application of potential be spectroscopically studied, which can be difficult given that changes in reactivity can occur. Spectroelectrochemical methods offer a way to study speciation as a function of potential and time, such that catalytic and noncatalytic reactivity can be understood in the context of an overall mechanism. Paired with steadily advancing electrochemical techniques for quantifying the thermodynamic and kinetic parameters of molecular electrocatalysts, spectroelectrochemical data sets can be used to generate a rich understanding of molecular behavior. Recent reports on the use of spectroelectrochemistry to understand molecular electrocatalytic reactions using transition metal complexes are summarized herein.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号