首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Architected porous metals in electrochemical energy storage
Authors:Vladimir Egorov  Colm O'Dwyer
Institution:1. School of Chemistry, University College Cork, Cork, T12 YN60, Ireland;2. Micro-Nano Systems Centre, Tyndall National Institute, Lee Maltings, Cork, T12 R5CP, Ireland;3. AMBER@CRANN, Trinity College Dublin, Dublin 2, Ireland;4. Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
Abstract:Porous metallic structures are regularly used in electrochemical energy storage (EES) devices as supports, current collectors, or active electrode materials. Bulk metal porosification, dealloying, welding, or chemical synthesis routes involving crystal growth or self-assembly, for example, can sometimes provide limited control of porous length scale, ordering, periodicity, reproducibility, porosity, and surface area. Additive manufacturing has shown the potential to revolutionize the fabrication of architected metals, allowing complex geometries not usually possible by traditional methods, by enabling complete design freedom of a porous metal based on the required physical or chemical property to be exploited. We discuss properties of porous metal structures in EES devices and provide some opinions on how architected metals may alleviate issues with electrochemically active porous metal current collectors, and provide opportunities for optimum design based on electrochemical characteristics required by batteries, supercapacitors or other electrochemical devices.
Keywords:Porous metals  Current collector  Additive manufacturing (AM)  Metal foams  Electrochemical energy storage (EES)  Batteries  Supercapacitors  Metallic lattice  3D printing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号