首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A DFT study of substituent effects in corannulene dimers
Authors:Josa Daniela  Rodríguez Otero Jesús  Cabaleiro Lago Enrique M
Institution:Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain.
Abstract:Corannulene dimers made up of corannulene monomers with different curvature and substituents were studied using M06-2X, B97D and ωB97XD functionals and 6-31+G* basis set. Corannulene molecules were substituted with five alternating Br, Cl, CH(3), C(2)H or CN units. Geometric results showed that substituents gave rise to small changes in the curvature of corannulene bowls. So, there was not a clear relationship between the curvature of bowls and the changes on interaction energy generated by addition of substituents in the bowl. Electron withdrawing substituents gave rise to a more positive molecular electrostatic potential (MEP) of the bowl, which was able to get a strong interaction with the negative MEP at the surface of a fullerene. Substitution with CN caused the largest effect, giving rise to the most positive MEP and to a large interaction energy of -24.64 kcal mol(-1), at the ωB97XD/6-31+G* level. Dispersive effects must be taken into account to explain the catching ability of the different substituted corannulenes. For unsubstituted dimers, calculations with DFT-D methods employing ωB97XD and B97D functionals led to similar results to those previously reported at the SCS-MP2/cc-pVTZ level for corannulene dimers (A. Sygula and S. Saeb?, Int. J. Quant. Chem., 2009, 109, 65). In particular, the ωB97XD functional led to a difference of only 0.35 kcal mol(-1), regarding MP2 interaction energy for corannulene dimers. On the other hand, the M06-2X functional showed a general considerable underestimation of interaction energies. This functional worked quite well to study trends, but not to obtain absolute interaction energies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号